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Abstract

While functional magnetic resonance imaging (fMRI) is widely used in studies of brain

functions, spatiotemporal resolution of the technique is limited. Conventionally, increasing

spatial resolution requires acquiring more samples to satisfy Nyquist rate, leading to inade-

quately long scan time. When Nyquist sampling rate is violated, resulting image is degraded

by aliasing artifacts. However, recent work in field of compressed sensing and previous ap-

plications of compressed sensing to MRI have demonstrated that images can be accurately

reconstructed from fewer samples than necessary: scan times can be reduced without loss of

image quality. This work describes an application of compressed sensing to fMRI, demon-

strating accurate reconstruction of activation maps and blood level oxygenation dependent

(BOLD) signal time series, from significantly undersampled data. We then show that the

potential reduction in scan time can instead be traded off for substantially improved spatial

resolution. Specifically, our method allows us to attain more than five-fold increase in image

matrix size, with no loss of volume coverage, decrease in temporal resolution, or any changes

to relevant imaging parameters. Results are shown on two optogenetic fMRI datasets.

1



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Phantom Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Undersampled fMRI experiment . . . . . . . . . . . . . . . . . . . . . 8

4.3 High Resolution fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Bibliography 17

II



1 Introduction

Due to its non-invasive nature and availability, functional magnetic resonance imaging (fMRI)

plays a dominant role in studies of brain functions. Most commonly used approach utilizes

blood oxygenation level-dependent (BOLD) contrast[1] and measures deoxyhemoglobin con-

centration variations in regions of neuronal activity. Technique makes it possible to image

activity in the entire brain when subject is presented a stimulus or performs a task.

Despite fMRI’s wide use, technique has resolution limitations. Ability to discern sub-

regions within activated areas requires high spatial resolution; however, this demands in-

creasing scan time leading to inadequate temporal sampling of signal dynamics, or losing

full brain coverage needed to study brain connectivity. Field of view, spatial, and temporal

resolutions need to be traded off. These tradeoffs, as well as intrinsic constraints of the

technique limit conclusions that can be drawn from fMRI data.

One source of these constraints is in magnetic resonance (MR) system hardware, which

requires sequential sampling, leading to lengthy acquisitions, whose duration increases with

spatial resolution or field-of-view. A significant amount of research work on MR systems is

focused on reducing scan time by acquisition protocol optimization, hardware improvements,

and post-processing steps. Because scan time is proportional to the number of acquired k-

space samples, a simple way to reduce scan time is to decrease the number of sampled

points, thus violating Nyquist sampling rate criteria. This leads to image degradation:

aliasing artifacts or loss of spatial resolution. However, research in field of compressed

sensing demonstrates that if one introduces weak restrictions on the underlying signal and the

acquisition system, exact reconstruction is possible from highly incomplete information [2;

3]. For MR, this implies that images can be accurately reconstructed from fewer k-space

samples than necessary by Nyquist rate: scan times can be significantly reduced without

loss of image quality.

In this work, we describe an application of compressed sensing framework to fMRI. We

demonstrate feasibility of significantly reducing the number of acquired k-space samples,
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while preserving image quality, providing accurate activation maps, and precisely recon-

structing BOLD time course. Performance of the method is examined on simulated phantom

data and a real optogenetic fMRI[4] (ofMRI) dataset. We then show that the framework can

be used to substantially improve spatial resolution in fMRI. Specifically, our method allows

us to attain more than five-fold increase in encoding matrix size, with no loss of volume

coverage, decrease in temporal resolution, or any changes to relevant imaging parameters.

Results are shown on two ofMRI datasets.

2 Background

Reconstruction of MR images from acquired k-space data can be viewed as the problem of

finding a solution to a system of linear equations. If k-space is undersampled, the problem

is underdetermined. Let x ∈ Cn be an image, y ∈ Cm - measured k-space data, and

F ∈ Cm×n - the partial Fourier transform matrix. We seek the solution x, but since k-space

is undersampled, m� n, F is ”fat”, and there are infinitely many solution vectors satisfying

y = Fx. Typically, in these cases, it is common to choose x that satisfies the minimum

energy property:

minimize ||x||2 subject to Fx = y (1)

However, this leads to undesirable aliasing artifacts, which can be suppressed only if addi-

tional knowledge of the signal is available.

Recently, theoretical results in field of information theory demonstrated that exploiting

prior knowledge of signal sparsity or compressibility makes it possible to exactly solve highly

underdetermined problems. Let Ψ be a transform (e.g. wavelet, finite difference, discrete

cosine) that provides means for describing signal of interest x with few significant terms.

Then, if the acquisition matrix F and sparsifying transform Ψ are mutually incoherent [5],
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reconstruction of x is possible by solving Basis Pursuit problem:

minimize ||Ψx||1 subject to Fx = y (2)

Sparsity of the solution in range of Ψ is enforced by `1 norm - a convex relaxation of combina-

torial `0 semi-norm, while the constraint limits search over x to the subspace consistent with

acquired data. Above formulation can be solved efficiently by interior point methods, but

only when the size of the problem is small. In large scale situations, it is common to use first-

order methods (gradient descent, nonlinear conjugate gradient) to solve an unconstrained

problem:

minimize
1

2
||Fx− y||22 + λ||Ψx||1 (3)

Compressed sensing formulation is relevant for MR, since data acquisition occurs in

alternate domain (k-space) and medical images are known to be compressible. In fact, a toy

example suggesting use of optimization problem (2) in MR image reconstruction was early

described in [2]. Since then, compressed sensing has been successfully applied in various MR

settings. Lustig et al. give a thorough description of CS-MRI using multislice 2D-DFT brain

imaging and 3D angiography as examples in [6]. Sparsity of these datasets is demonstrated

under wavelet and total variation transforms. Ajraoui et al. demonstrate acceleration in 3He

lung imaging, using wavelets to compress images in [7]. Kim and Nayak reduce sampling

time in 3D upper airway MRI, by enforcing data sparsity under total variation transform

[8].

In dynamic MRI, where temporal redundancy of the data can be exploited, cardiac

imaging received most attention, with several different proposed reconstruction schemes.

Periodicity of cardiac cycles is used to sparsify temporal dimension of the data via Fourier

transform in [9]. Gamper et al [10] propose a greedy reconstruction algorithm based on

orthogonal matching pursuit. kt-FOCUSS, a reconstruction scheme inspired by video coding,

which performs data compression using motion estimation and residual encoding stages, is
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described in [11]. A method extending kt-FOCUSS to functional imaging is described by

Jung and Ye in [12]. Aside from the last work, we are not aware of applications of compressed

sensing to fMRI. This is surprising, since the imaging application can readily benefit from

technological MR improvements, and it is by no means a niche field.

3 Methods

In a functional MRI experiment, a sequence of brain images is rapidly acquired over the

course of several minutes. Signal of interest – variations in blood oxygenation – manifests

itself as small changes in signal intensity in regions of neuronal activity. Ideally, acquisition

proceeds without any subject motion, and the acquired image does not change significantly

from frame to frame. Therefore, the captured dataset contains an enormous amount of

redundancy and can be compressed temporally, as well as spatially. To exploit this, we

require the reconstructed signal to be sparse under spatial and temporal finite difference

transforms. Regularization by finite differences (also referred to as total variation) has been

well known since [13], and is popular in image processing applications. In CS-MRI, it’s been

previously used in [6; 8; 14; 15].

Let us define some notation pertaining to our problem formulation. Suppose the fMRI

experiment consists of T frames, and let x(i) represent image-domain data, y(i) – mea-

sured k-space data, and F (i) the partial Fourier matrix, all corresponding to ith frame.

Further, denote by x = (x(1), x(2), ..., x(T )) the entire fMRI sequence in image domain, by

y = (y(1), y(2), ..., y(T )) – all k-space data acquired over the course of the experiment, and by

F = diag{F (1), F (2), ..., F (T )} the collection of all Fourier matrices used in the experiment.
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The underdetermined system of equations we are attempting to solve is then:



y(1)

y(2)

y(3)

...

y(T )


=



F (1) 0 0 . . . 0

0 F (2) 0 . . . 0

0 0 F (3) . . . 0
...

...
...

. . . 0

0 0 0 . . . F (T )





x(1)

x(2)

x(3)

...

x(T )


(4)

written compactly as y = Fx, as before. Let D1, ..., D4 be the difference operators along

each of the four physical dimensions of the dataset. Specifically, if m[i, j, k, l] is the 4-

D representation of the image, with physical dimensions indexed by i, j, k, l, D1 computes

m̂[i, j, k, l] = m[i, j, k, l]−m[i−1, j, k, l], D2 computes m̂[i, j, k, l] = m[i, j, k, l]−m[i, j−1, k, l],

and so on. All operations satisfy circular boundary conditions. Denote by ψ(.) the smooth

approximation to the nondifferentiable `1 norm: ||x||1 ≈ ψ(x) =
∑

i(
√
x∗ixi + µ2−µ). Then

the problem is:

minimize
1

2
||Fx− y||22 +

4∑
i=1

λiψ(Dix) (5)

The regularization term
∑4

i=1 ψ(Dix) is essentially the anisotropic total variation penalty

for 4-D datasets.

Gradient descent method with efficient backtracking line search is used to find the solu-

tion. Algorithm 1 below explicitly describes the procedure. Typical parameter values used in

reconstructions were α = 5×10−3, β = 0.5, λ1 = λ2 = λ3 = λ4 = 10−4, µ = 10−4. Algorithm

was terminated after maximum allowed number of iterations (typically 300-500) or after

fractional change in function value reached small values: |f(xk) − f(xk−1)|/|f(xk)| ≤ 10−7.

Fourier transforms are performed using a non-uniform FFT implementation by Fessler and

Sutton [16] (modified to perform FFT calculations on a GPU), as it is extremely stable in

iterative reconstructions. One reason gradient descent was chosen over more sophisticated

algorithms is due to large size of the problem. As formulated, the entire fMRI sequence is a

single optimization variable x ∈ Cn. Especially in high resolution fMRI reconstructions, n
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is very large: for some results shown in this report n = 167× 167× 32× 130 = 116, 018, 240.

Storing several instances of these long vectors is prohibited by memory limits. But, due to

its simplicity, gradient descent requires little memory, making it suitable for this application.

Algorithm 1 Gradient descent

Require: initial value of x, α ∈ (0, 0.5) , β ∈ (0, 1)
Ensure: x minimizes 1

2
||Fx− y||22 +

∑4
i=1 λiψ(Dix)

repeat
∇f(x)← FH(Fx− y) +

∑4
i=1 λiD

T
i ∇ψ(Dix) , where ∇ψ(x) = x√

x∗x+µ2

t← 1
flin ← f(x)− αt||∇f(x)||22
fnew ← f(x− t∇f(x))
repeat
t← βt
flin ← f(x)− αt||∇f(x)||22
fnew ← f(x− t∇f(x))

until fnew ≤ flin
x← x− t∇f(x)

until convergence

4 Experiments

In all experiments, we use stack-of-spirals trajectory to sample k-space, since it efficiently

utilizes hardware and allows fast sampling with minimal image-domain distortions. In high

resolution experiments, we use variable-density spirals to enable sampling of higher spatial

frequencies while preserving scan time and image quality [17]. Spiral trajectories are also

well-suited for compressed sensing; performing undersampling by removing a randomly cho-

sen subset of interleaves produces adequately incoherent artifacts. Promising results using

this undersampling method have been reported previously [14]. For reconstruction of an

image sequence, temporally-incoherent artifacts are desirable. To achieve this, we remove

different, randomly chosen subsets of interleaves from each frame.
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4.1 Phantom Experiment

To test the reconstruction procedure, a Shepp-Logan phantom image was modified to sim-

ulate fMRI dataset. Modified phantom was a sequence of 120 70x70 pixel images, with

sinusoidal modulation added to model BOLD signal time course. The period of the sinusoid

was 20 frames, and the amplitude ranged from 1% to 5% of the maximum signal value.

Region of activation consisted of a 3x3 pixel region in the image (0.17% of total image area).

Complex-valued gaussian noise with σ = 5% signal amplitude was added to image-domain

data. Apart from the activation pattern described above, all frames were identical. Ad-

dition of noise significantly degraded sparsity of the data, but was necessary to produce a

reasonable model for fMRI data.

K-space was sampled using a ten-interleaf spiral (via inverse gridding) and undersampling

was done by removing randomly chosen interleaves from each frame. Different interleaves

were removed from each frame, leading to significant, time-varying aliasing artifacts. Phan-

tom reconstructions were performed from a fraction of available k-space data, ranging from

10% to 90% (corresponding to 1-9 kept interleaves), yielding undersampling factors of 1.1X

to 10X (undersampling = total data / available data). To visualize the algorithm’s abil-

ity to reconstruct the activation sinusoid in correct location, we calculate coherence maps,

according to:

c =
|f6|√∑T/2
i=1 |fi|2

(6)

Here f is the Fourier transform of the time series of each pixel in the image and f6 is the

paradigm frequency. Informally, equation (6) measures the amount of energy the activation

sinusoid contributes to the voxel time series.

Figure 1 summarizes results of the phantom experiment. For the adverse, high noise

(σ = 5%), low signal amplitude (1%) condition that was tested, signal was well reconstructed

from 50 % and even 30 % data: activated region was correctly localized (Figure 1a), and the

time series remained close to the truth (Figure 1b). Higher undersampling factors caused
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distortions in time series and ambiguous coherence maps. For all signal amplitudes (1%, 3%,

5%), coherence in the region of interest (ROI) for reconstructions from as little as 40% data

reached or exceeded corresponding ground truth value (Figure 1c). Sampling patterns used

in reconstructions, which highlight random temporal sampling, are shown in Figure 1d. In

each column, white and black pixels indicate interleaves that were and were not acquired,

respectively.
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Figure 1: fMRI phantom experiment. a, reconstructed images and coherence map for several
undersampling factors. b, reconstructed time series in the ”activated” region. c, coherence
in the ROI for different signal amplitudes and undersampling factors. d, sampling patterns
used in the reconstruction

4.2 Undersampled fMRI experiment

To verify the algorithm’s ability to accurately reconstruct activation maps and signal dynam-

ics in real data, previously acquired ofMRI dataset was used. Data was acquired on Bruker

7T small bore scanner with 39.6 G/cm maximum gradient amplitude and 457 G/cm/s max-

imum slew rate.
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While gradient recalled echo fMRI sequences are more commonly used, imaging based

on balanced steady state free precession (SSFP) makes it possible to acquire 3D volume

with improved SNR, reduced image distortions and signal dropout [18; 19]. These properties

are desirable for compressed sensing, since 3D Fourier encoding provides large flexibility in

choice of sampling trajectory and undersampling pattern, while decrease in noise improves

signal sparsity. We thus tested the algorithm on fMRI dataset acquired with 3D pass-band

balanced SSFP sequence. Pulse sequence was a 10 interleave stack-of-spirals with 32 kz en-

codes, 35x35x16 mm3 field of view, 500x500x500 um3 resolution, and 70x70x32 matrix size.

Repetition time was 9.375 ms, echo time was 2 ms, and scan time – 3 seconds. Disregarding

dummy scans needed to bring magnetization into steady state, functional experiment con-

sisted of 130 scans (390 seconds). First 30 s were used to estimate functional baseline and

were followed by 6 cycles of 20 s stimulation and 40 s rest.

Undersampling was performed by removing a randomly chosen subset of all interleaves

from available data. As in the phantom experiment, different interleaves were removed in

each frame. Since for a general object energy concentration of k-space can be assumed to be

approximately spherical, undersampling density along phase encode axis (kz) was variable,

decreasing toward high kz values. Reconstructions were performed on datasets undersam-

pled by 1.5X, 2X, and 3X. Since bSSFP images exhibit off-resonance banding artifacts, two

datasets per undersampling factor (acquired with 0◦ and 180◦ phase) were reconstructed and

combined by maximum intensity projection (MIP). Figure 2 displays coherence maps, cal-

culated according to c = |f6|√∑T/2
i=1 |fi|2

, phase maps calculated as φ = ∠f6, and BOLD response

time series. All images are thresholded at c = 0.35. To make the time series comparison

fair, the same voxels were considered in reconstructed datasets, using the ROI selected from

the ground truth dataset. Response time series from the reconstructed (green) and fully

sampled (black) data are shown on the same plot to facilitate comparison. Evidently, in

datasets reconstructed from 66% and 50% data, activated region is correctly localized and

time series of the response closely follows the ground truth. In dataset reconstructed from
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33% data, response is distorted and activation maps are significantly noisier. Increase in

number of activated pixels in highly undersampled data can be understood by considering

minimization of ||D4x||1 as application of a nonlinear low-pass filter. Minimization of `1 norm

of pixelwise difference between consecutive images removes some high frequency oscillations

in time series, decreasing

√∑T/2
i=1 |fi|2 and effectively increasing coherence coefficient.

4.3 High Resolution fMRI

Previous applications of compressed sensing MRI sought to reduce imaging time or improve

temporal resolution by reducing the number of acquired k-space samples. Instead, we trade

off the possible reduction in scan time to attain higher spatial resolution in 3D bSSFP fMRI

experiments. To do so, we designed a pulse sequence with sampling trajectory extending

farther in k-space, allowing sampling of high spatial frequencies, while overall resulting in

sparsely sampled k-space, as illustrated in Figure 3. To demonstrate that this small modifi-

cation to the acquisition protocol can yield improvements in spatial resolution, we compared

results with ones acquired using the standard pulse sequence. Except for the difference in

spatial resolution, both sequences had the same relevant imaging parameters: TR = 9.375

ms, TE = 2 ms, FOV = 35x35x16 mm3, 32 slices/kz encodes, readout duration = 1.7 ms,

flip angle = 30◦, total imaging time = 3 s. To attain maximum gain in spatial resolution

while preserving short readout duration, variable density sampling was employed in high

resolution sequence.

Results are demonstrated on two datasets, with resolution 320×320×500 um3 and

210×210×500 um3, and matrix sizes 110×110×32 and 167×167×32. Each CS-reconstructed

dataset is compared to corresponding low-resolution fully sampled dataset, acquired during

the same imaging session. Trajectories for the CS pulse sequence were designed for 20 and

30 interleaves, requiring 640 and 960 TRs (alternatively: 6 and 9 seconds of imaging time)

to acquire full data. To keep total imaging time at 3 s, only 320 TRs were performed

per scan, by acquiring a subset of all interleaves. This yields 2X and 3X undersampling
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factors, meaning that two and three times more data would need to be acquired to support

given resolution. These undersampling factors result in substantial increase in number of

encoded voxels in image domain; matrix sizes increase by factors of (110/70)2 = 2.4 and

(167/70)2 = 5.7.

Figure 4 compares fully sampled 500×500×500 um3 acquisition and 320×320×500 um3

CS-acquisition (2X undersampling). As before, time series from the reconstructed (green)

and fully sampled (black) data are shown on the same plot to illustrate close agreement

between the two acquisition schemes. Noise in the activation maps (both shown at threshold

c=0.35) is not substantially increased, and most regions active in low-resolution data are

also active in high-resolution reconstruction. In particular, active volume in fully sampled

data is 16.25 mm3 and it is 12.9 mm3 in CS-reconstruction. This result indicates possibility

of using compressed sensing to achieve more than two-fold increase in image matrix size,

without sacrificing any imaging parameters, and with little SNR penalty.

To further test the method, 3X undersampled dataset with 210×210×500 um3 resolution

was acquired and reconstructed, with results shown in Figure 5. In this case, reconstructed

activation map with coherence threshold set at c=0.35 reveals significant noise. Instead,

considering the above-mentioned nonlinear filtering of time series that results in overall

increase of coherence values, c=0.45 was chosen as the threshold for CS-reconstructed data

that is equivalent to c=0.35 for fully sampled data. All following operations, e.g. ROI choice,

volume calculations, etc. were based on c=0.45 threshold. Active volume in fully sampled

dataset is 55.63 mm3 in cortex region, and 12.25 mm3 in thalamus. In CS-reconstruction, it

is 20.73 mm3 in cortex and 1.74 mm3 in thalamus.

5 Discussion

This work demonstrated a method for substantially improving spatial resolution in fMRI

experiments by utilizing compressed sensing framework. Feasibility of reconstructing fMRI
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data from undersampled kspace was verified on simulated phantom, as well as real fMRI

dataset. Results of the proposed high resolution fMRI scheme were demonstrated on two

datasets, with over two-fold and five-fold increases in image matrix size, and corresponding

increases in spatial resolution. In testing the method, we found that very high undersam-

pling factors (e.g. 3X) result in SNR loss, ultimately resulting in substantial loss of active

volume in reconstructions. Despite that, gain in spatial resolution reveals details not seen in

fully sampled, low resolution data: for instance, in Figure 5, robust activation of upper cor-

tical layers is much more evident in compressed-sensing reconstruction. Also, acquiring and

averaging several scans (which was not done here) can be used to efficiently reduce noise.

Therefore, improving spatial resolution using this method can make it possible to extend

conclusions drawn from fMRI data and facilitate its interpretation.
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